Micro Tech Lab Professional solutions for digital micro and macro photography
Products Reviews & buying guide Contact Order Sitemap References

 

Online configurator: LM microscope adapter for all digital cameras and microscopes
An overview of the LM microscope adapters
We offer LM digital adapter solutions for the following microscopes
Microscope Adapter: LM wide-field adapter for eyepiece tubes with 30 mm inner diameter
LM digital SLR universal wide-field adapter: now with larger image field and focus settings
All in one: LM Digital SLR Universal Adapter for phototube and the eyepiece tube (C-Mount, 23.2mm, 30mm 37mm, 38mm, 42mm)
LM adapter solution for c-mount microscope ports with reduction optics (0.5x / 0.6x / 0.7x or f=55mm / f=75mm / f=100mm)
LM wide-field camcorder adapter for the new generation of ultra HD camcorders
LM Macroscope 24x (15x and 11x) for Focus Stacking: Highest resolution without compromise
LM Macroscope 9x (5x and 3x) for Focus Stacking: Highest resolution without compromise
LM photo microscopes: the flexible photography solution for large sensor cameras!
Macro Close-Up Lens: LM Macro lens 40/80 with plan achromatic optics
Special mounting medium for microscopy, non toxic,water solved,light hardening,fast solidifying and drying,neutraldoes not make air bubbles,high optical solution,color protecting,solvent free,high refractive index
Micro Tech Lab advisory service: microscopy, digital cameras, high quality photo
Camera recommendation for microscopy application
Microscope Digital Cameras: Camera ranking for microscopy use
DSLR camera or special-purpose microscope cameras?

Folge Micro_Tech_Lab auf Facebook Folge Micro_Tech_Lab auf Twitter       35

Are normal stereo microscopes suitable for high-quality photographic documentation?

95% of all stereo microscopes are designed either according to the Greenough principle or the telescope principle (Abbe principle). They deliver good to very good results on visual inspection. If, however, digital camera equipment is mounted onto a conventional stereo microscope, more often than not the quality of the images is disappointing. Especially in the case of the Greenough principle, the difference between the visual perception of the image quality and the image itself is particularly pronounced. How does such a difference arise? Is the human eye superior to the camera?


To answer this question we need to go into more detail.

The Greenough principle:
Greenough-type stereo microscopes have two completely separate optical paths. They strike the object with a difference in angle of 15º, which is created by two lenses situated in a common mount. The human brain is able to generate a three-dimensional image through the optical path and the angular offset. If you close one eye and look again through the microscope, you can see that only the centre of the image is optimally focussed. To the left and right of the centre, the image is either under- or overfocussed – in other words, there is a marked fuzziness. This effect is especially evident with planar objects, such as histological sections, geological stone sections or flat electronic components. The larger the optical path angle, the stronger the described effect. Optical systems have only a limited depth of field as a result of their physical characteristics. With Greenough stereo microscopes, structures are only depicted with optimum focus over a narrow area. This area shrinks with increasing magnification of the microscope. As the rays always hit the object at a fixed angle of 15º, there is always a sharpness gradient over the entire image field.




 

The image quality of the photographic documentation of planar objects can be improved by using a simple trick: The angular offset can be balanced out by tilting the object plane by 7.5°. This should cause the sample to be positioned at right angles to the optical path.
 





The telescope principle:
 
“Telescope style” (Abbe principle) stereo microscopes are more flexible than the Greenough-type microscopes described above. With this design there is no double lens; instead, the microscope has only one lens with a large diameter through which the optical paths run for both the left and the right eye. There is no real three-dimensional impression upon visual inspection through the common main lens, as there is with the Greenough instruments. This is particularly disadvantageous when working under the microscope, e.g. with specimens. The flaw in this system lies in the course of the optical path into the lens. As only one common lens is used, the lens edge must be used to generate the image. The intermediate image is at an infinite distance. The central, high-quality area of the lens unfortunately remains unused. However, due to its physical characteristics, the central part of the lens exhibits fewer optical errors than its edge. In photographic documentation, only a moderate image quality is achieved; nevertheless, this kind of microscope is better suited to microphotography than the Greenough microscope.





Conclusion: Stereo microscopes designed according to the more expensive telescope principle are indeed better suited than Greenough microscopes for high-level photographic documentation with film or digital cameras, but they, too, do not deliver optimum results.

All major manufacturers offer specific solutions for micro and macro photography. These instruments, however, tend to fall into the higher price bracket, starting from € 10,000.

The LM macroscopes with parallax-free, centric optical path and high-quality precision optics are replacing all conventional stereomicroscopes with parallel, non-centric optical paths in photographic documentation.

Convert your digital SLR camera into a professional microscope

[Further information and prices]


New LM Digital Adapter for:

Sony Alpha 9 / Canon EOS R with Canon Adapter EF-EOS R / Canon EOS RP with Canon Adapter EF-EOS R / Sony Alpha 7S II / Sony Alpha 7R III / Nikon Z6 with F-Mount Adapter FTZ / Sony Alpha 7R II / Nikon Z7 with F-Mount Adapter FTZ / Sony Alpha 7S / Nikon D850 / Canon EOS 1D X Mark II / Sony Alpha 7III / Nikon D5 / Canon EOS 1D X / Nikon D4s / Canon EOS 5D Mark IV / Nikon D4 / Nikon D750 / Canon EOS 6D Mark II / Sony Alpha 6300 / Sony Alpha 6500 / Nikon D500 / Nikon D810 / Nikon D800 / Nikon D800E / Nikon Df / Panasonic Lumix DC-G9 / Nikon D610 / Nikon D600 / Canon EOS 250D / Canon EOS M50 / Canon EOS 6D / Sony Alpha 99 II (SLT-A99 II) / Canon EOS 5DS R ( without low-pass filter) / Olympus OM-D E-M1 Mark II / Canon EOS 80D / Canon EOS 5DS / Sony Alpha 77 II / Canon EOS 70D / Nikon D7200 / Pentax K-1 Mark II /

Related Links
Extreme macro photography:LM macroscope and a DSLR/DSLM camera
LM DSLR Macrocope example of use: Jewellery and gemstone photography
LM Macroscope 9x (5x and 3x) for Focus Stacking: Highest resolution without compromise
LM Macroscope 24x (15x and 11x) for Focus Stacking: Highest resolution without compromise
LM DSLR macroscope: example application: Photographic documentation of hygiene products
Example application LM macroscope 24x: European garden spider (Araneus diadematus)

 

High-end intermediate optics for connecting microscopes to:
  • digital SLR cameras
  • digital mirrorless system cameras with an interchangeable lens mount
  • c-mount-, USB- and firewire cameras
  • digital compact cameras and camcorders
[Further information amd prices]
 
Which digital camera works best on a microscope?
LM Makroskop 16x Convert your digital SLR camera into a professional microscope
Special mounting media  for microscopy

Tips and tricks to connect your digital camera and to process digital images
wing_drosophila

 

 Demo Pictures

 
© 1999-2019 MICRO TECH LAB. All rights reserved / Legal notice / Privacy policy / Newsletter / Press
 
--